Teacher: Black	Course: $8^{\text {th }}$ Grade Math Grade Level(s): 8th
	Unit 1 Topic(s): Real Numbers
Content/Big Ideas	Mathematical relationships among numbers can be represented, compared, and communicated. Mathematical relationships can be represented as expressions, equations and inequalities in mathematical situations. Numerical quantities, calculations, and measurements can be estimated or analyzed by using appropriate strategies and tools. Patterns exhibit relationships that can be extended, described, and generalized.
Essential Questions	How is mathematics used to quantify, compare, represent, and model numbers? How can mathematics support effective communication? How are relationships represented mathematically? How can expressions, equations and inequalities be used to quantify, solve, model and/or analyze mathematical situations? What does it mean to estimate or analyze numerical quantities? What makes a tool and/or strategy appropriate for a given task? How can patterns be used to describe relationships in mathematical situations?
Concepts	Rational Numbers and Irrational Numbers
Competencies	Distinguish between rational and irrational numbers using their properties. Convert a terminating or repeating decimal into a rational number. Use rational approximations of irrational numbers to compare the size of irrational numbers.
Standards/Benchmarks	CC.2.1.8.E. 1
	CC.2.1.8.E. 4
	M08.A-N.1.1.1
	M08.A-N.1.1.2
	M08.A-N.1.1.3
	M08.A-N.1.1.4
	M08.A-N.1.1.5

Activities \& Assessments	- Homework - Collaborative work - think-pair-share - Quizzes - Tests - -Written reflection on lesson - •Plus/delta - •Quick thinks (correct the error, paraphrase...) - •Written summary of main points - •Peer feedback - •Self-analysis of work - Recitation - -Discussion - Observations - Bell-ringers

Competencies	Apply concepts of integer exponents to generate equivalent expressions. Use and evaluate square roots and cube roots to represent solutions to equations.
Standards/Benchmarks	CC.2.2.8.B. 1 M08.B-E.1.1.1 M08.B-E.1.1.2 M08.B-E.1.1.3 M08.BE.1.1.4
Activities \& Assessments	- Homework - Collaborative work - think-pair-share - Quizzes - -Written reflection on lesson - •Plus/delta - •Quick thinks (correct the error, paraphrase...) - -Written summary of main points - Discussion - •Bell-ringers - Observation - Collins writing - Interviews - Performance tasks - Exhibitions and demonstrations - Portfolios - Journals - Teacher-created tests - Rubrics - Self- and peer-evaluation

Teacher: Black	Course: Pre-Algebra Grade Level(s): 8th
	Unit 3 Topic(s): Linear equations
Content/Big Ideas	Mathematical relationships among numbers can be represented, compared, and communicated. Mathematical relationships can be represented as expressions, equations and inequalities in mathematical situations. Mathematical relations and functions can be modeled through multiple representations and analyzed to raise and answer questions. Data can be modeled and used to make inferences.
Essential Questions	How can mathematics support effective communication? How are relationships represented mathematically? How can expressions, equations and inequalities be used to quantify, solve, model, and/or analyze mathematical situations? How can data be organized and represented to provide insight into the relationship between quantities? How does the type of data influence the choice of display?
Concepts	Linear Equations
Competencies	Analyze and describe linear relationships between two variables, using slope. Make connections between slope, lines and linear equations. Interpret solutions to a linear equation and systems of two linear equations. Analyze, model and solve linear equations. Analyze and solve pairs of simultaneous equations.
Standards/Benchmarks	CC.2.2.8.B.2 CC.2.2.8.B.3 M08.B-E.2.1.1 M08.B-E.2.1.2 M08.B-E.2.1.3 M08.B-E.3.1.1 M08.B-E.3.1.2 M08.B-E.3.1.3 M08.B-E.3.1.4 M08.B-E.3.1.5
Activities \& Assessments	- Homework - Collaborative work - think-pair-share - Quizzes - -Written reflection on lesson - •Plus/delta - •Quick thinks (correct the error, paraphrase...) - •Written summary of main points

	- •Discussion - -Bell-ringers - Observation - Collins writing - Interviews - Performance tasks - Exhibitions and demonstrations - Portfolios - Journals - Teacher-created tests - Rubrics - Self- and peer-evaluation
Teacher: Black	Course: Pre-Algebra Grade Level(s): 8th
	Unit 4 Topic(s): Functions
Content/Big Ideas	Mathematical relationships among numbers can be represented, compared, and communicated. Mathematical relationships can be represented as expressions, equations and inequalities in mathematical situations. Mathematical relations and functions can be modeled through multiple representations and analyzed to raise and answer questions. Data can be modeled and used to make inferences.
Essential Questions	How is mathematics used to quantify, compare, represent, and model numbers? How can mathematics support effective communication? How can expressions, equations and inequalities be used to quantify, solve, model, and/or analyze mathematical situations? How can data be organized and represented to provide insight into the relationship between quantities? How can probability and data analysis be used to make predictions?
Concepts	Functions

Competencies	Define, interpret, and compare functions displayed algebraically, graphically, numerically in tables, or by verbal descriptions. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
Standards/Benchmarks	CC.2.2.8.C.1 CC.2.2.8.C.2 M08.B-F.1.1.1 M08.B-F.1.1.2 M08.BF.1.1.3 M08.B-F.2.1.1 M08.B-F.2.1.2
Activities \& Assessments	- Homework - Collaborative work - think-pair-share - Quizzes - -Written reflection on lesson - •Plus/delta - •Quick thinks (correct the error, paraphrase...) - •Written summary of main points - -Discussion - •Bell-ringers - Observation - Collins writing - Interviews - Performance tasks - Exhibitions and demonstrations - Portfolios - Journals - Teacher-created tests - Rubrics - Self- and peer-evaluation

Teacher: Black	Unit 5
	Topic(s): Cylinders, Cones, and Spheres

Content/Big Ideas	
	Patterns exhibit relationships that can be extended, described, and generalized. Geometric relationships can be described, analyzed, and classified based on spatial reasoning and/or visualization.
Essential Questions	How can patterns be used to describe relationships in mathematical situations? How can recognizing repetition or regularity assist in solving problems more efficiently? How are spatial relationships, including shape and dimension, used to draw, construct, model, and represent real situations or solve problems? How can the application of the attributes of geometric shapes support mathematical reasoning and problem solving? How can geometric properties and theorems be used to describe, model, and analyze situations?
Concepts	Cylinders, Cones, and Spheres Standards/Benchmarks
Competencies	Cc.2.3.8.A.1 M08.C-G.3.1.1 Apply concepts of volume of cylinders, cones, and spheres to solve real- world mathematical problems.

Activities \& Assessments	- Homework - Collaborative work - think-pair-share - Quizzes - -Written reflection on lesson - •Plus/delta - •Quick thinks (correct the error, paraphrase...) - -Written summary of main points - -Discussion - Bell-ringers - Observation - Collins writing - Interviews - Performance tasks - Exhibitions and demonstrations - Portfolios - Journals - Teacher-created tests - Rubrics - Self- and peer-evaluation
Teacher: Black	Course: Pre-Algebra Grade Level(s): 8th
	Unit 6 Topic(s): Congruence and Similarity
Content/Big Ideas	Patterns exhibit relationships that can be extended, described, and generalized. Geometric relationships can be described, analyzed, and classified based on spatial reasoning and/or visualization.
Essential Questions	How can patterns be used to describe relationships in mathematical situations? How can recognizing repetition or regularity assist in solving problems more efficiently? How are spatial relationships, including shape and dimension, used to draw, construct, model, and represent real situations or solve problems? How can the application of the attributes of geometric shapes support mathematical reasoning and problem solving? How can geometric properties and theorems be used to describe, model, and analyze situations?

Concepts	Congruence and Similarity
Competencies	Use transformations to demonstrate congruence and similarity of geometric figures. Use various tools to understand and apply geometric transformations to geometric figures
Standards/Benchmarks	CC.2.3.8.A.2 M08.C-G.1.1.1 M08.C-G.1.1.2 M08.C-G.1.1.3 M08.C-G.1.1.4
Activities \& Assessments	- Homework - Collaborative work - think-pair-share - Quizzes - -Written reflection on lesson - •Plus/delta - •Quick thinks (correct the error, paraphrase...) - •Written summary of main points - Discussion - - Bell-ringers - Observation - Collins writing - Interviews - Performance tasks - Exhibitions and demonstrations - Portfolios - Journals - Teacher-created tests - Rubrics - Self- and peer-evaluation

$\left.\begin{array}{|l|l|}\hline & \text { Unit 7 } \\ & \text { Topic(s): Pythagorean Theorem } \\ \hline \text { Content/Big Ideas } & \begin{array}{l}\text { Patterns exhibit relationships that can be extended, described, and } \\ \text { generalized. Geometric relationships can be described, analyzed, and } \\ \text { classified based on spatial reasoning and/or visualization. }\end{array} \\ \hline \text { Essential Questions } & \begin{array}{l}\text { How can recognizing repetition or regularity assist in solving problems } \\ \text { more efficiently? How are spatial relationships, including shape and } \\ \text { dimension, used to draw, construct, model, and represent real situations } \\ \text { or solve problems? How can the application of the attributes of } \\ \text { geometric shapes support mathematical reasoning and problem } \\ \text { solving? How can geometric properties and theorems be used to } \\ \text { describe, model, and analyze situations? }\end{array} \\ \hline \text { Concepts } & \begin{array}{l}\text { Pythagorean Theorem }\end{array} \\ \hline \text { Standards/Benchmarks } & \begin{array}{l}\text { CC.2.3.8.A.3 M08.C-G.2.1.1 M08.C-G.2.1.2 M08.C-G.2.1.3 } \\ \text { Competencies }\end{array} \\ \hline \text { Apply the Pythagorean Theorem and its converse to solve mathematical } \\ \text { problems in two and three dimensions. }\end{array}\right\}$

Activities \& Assessments	- Homework - Collaborative work - think-pair-share - Quizzes - - Written reflection on lesson - •Plus/delta - •Quick thinks (correct the error, paraphrase...) - -Written summary of main points - -Discussion - •Bell-ringers - Observation - Collins writing - Interviews - Performance tasks - Exhibitions and demonstrations - Portfolios - Journals - Teacher-created tests - Rubrics - Self- and peer-evaluation

Teacher: Black
Course: Pre-Algebra
Grade Level(s): 8th
$\left.\begin{array}{|l|l|}\hline & \text { Unit 8 } \\ \text { Topic(s): Data and Distributions }\end{array} \left\lvert\, \begin{array}{l}\text { Numerical quantities, calculations, and measurements can be estimated } \\ \text { or analyzed by using appropriate strategies and tools. Mathematical } \\ \text { relations and functions can be modeled through multiple } \\ \text { representations and analyzed to raise and answer questions. Data can } \\ \text { be modeled and used to make inferences. }\end{array}\right.\right\}$

Concepts	Data and Distributions
Competencies	Construct, analyze, and interpret bivariate data displayed in scatter plots. Identify and use linear models to describe bivariate measurement data. Use frequencies to analyze patterns of association seen in bivariate data.
Standards/Benchmarks	CC.2.4.8.B.1 CC.2.4.8.B. 2 M08.D-S.1.1.1 M08.D-S.1.1.2 M08.D-S.1.1.3 M08.D-S.1.2.1
Activities \& Assessments	- Homework - Collaborative work - think-pair-share - Quizzes - -Written reflection on lesson - •Plus/delta - •Quick thinks (correct the error, paraphrase...) - •Written summary of main points - -Discussion - Bell-ringers - Observation - Collins writing - Interviews - Performance tasks - Exhibitions and demonstrations - Portfolios - Journals - Teacher-created tests - Rubrics - Self- and peer-evaluation

